csv_2_plot: improve plot configuration and add average voltage/interval calculations
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
This commit is contained in:
@@ -3,6 +3,7 @@ import matplotlib.dates as mdates
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from dateutil.tz import gettz
|
from dateutil.tz import gettz
|
||||||
|
from matplotlib.ticker import MultipleLocator
|
||||||
|
|
||||||
|
|
||||||
def plot_power_data(csv_path, output_path, plot_types, sources):
|
def plot_power_data(csv_path, output_path, plot_types, sources):
|
||||||
@@ -19,16 +20,11 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
|||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Read the CSV file into a pandas DataFrame
|
# Read the CSV file into a pandas DataFrame
|
||||||
# The 'timestamp' column is parsed as dates. Pandas automatically recognizes
|
|
||||||
# the ISO format (with 'Z') as UTC.
|
|
||||||
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
|
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
|
||||||
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
|
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
|
||||||
|
|
||||||
# --- Timezone Conversion ---
|
# --- Timezone Conversion ---
|
||||||
# Get the system's local timezone
|
|
||||||
local_tz = gettz()
|
local_tz = gettz()
|
||||||
# The timestamp from CSV is already UTC-aware.
|
|
||||||
# Convert it to the system's local timezone for plotting.
|
|
||||||
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
|
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
|
||||||
print(f"Timestamp converted to local timezone: {local_tz}")
|
print(f"Timestamp converted to local timezone: {local_tz}")
|
||||||
|
|
||||||
@@ -39,24 +35,32 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
|||||||
print(f"An error occurred while reading the CSV file: {e}")
|
print(f"An error occurred while reading the CSV file: {e}")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# --- Calculate Average Interval ---
|
||||||
|
avg_interval_ms = 0
|
||||||
|
if len(df) > 1:
|
||||||
|
avg_interval = df['timestamp'].diff().mean()
|
||||||
|
avg_interval_ms = avg_interval.total_seconds() * 1000
|
||||||
|
|
||||||
|
# --- Calculate Average Voltages ---
|
||||||
|
avg_voltages = {}
|
||||||
|
for source in sources:
|
||||||
|
voltage_col = f'{source}_voltage'
|
||||||
|
if voltage_col in df.columns:
|
||||||
|
avg_voltages[source] = df[voltage_col].mean()
|
||||||
|
|
||||||
# --- Plotting Configuration ---
|
# --- Plotting Configuration ---
|
||||||
# Y-axis scale settings from chart.js
|
|
||||||
scale_config = {
|
scale_config = {
|
||||||
'power': {'steps': [5, 20, 50, 160]},
|
'power': {'steps': [5, 20, 50, 160]},
|
||||||
'voltage': {'steps': [5, 10, 15, 25]},
|
'voltage': {'steps': [5, 10, 15, 25]},
|
||||||
'current': {'steps': [1, 2.5, 5, 10]}
|
'current': {'steps': [1, 2.5, 5, 10]}
|
||||||
}
|
}
|
||||||
|
|
||||||
plot_configs = {
|
plot_configs = {
|
||||||
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
|
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
|
||||||
'cols': [f'{s}_power' for s in sources]},
|
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
|
||||||
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
|
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
|
||||||
'cols': [f'{s}_voltage' for s in sources]},
|
|
||||||
'current': {'title': 'Current', 'ylabel': 'Current (A)',
|
|
||||||
'cols': [f'{s}_current' for s in sources]}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
channel_labels = [s.upper() for s in sources]
|
channel_labels = [s.upper() for s in sources]
|
||||||
# Define a color map for all possible sources
|
|
||||||
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
|
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
|
||||||
channel_colors = [color_map[s] for s in sources]
|
channel_colors = [color_map[s] for s in sources]
|
||||||
|
|
||||||
@@ -65,20 +69,17 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
|||||||
print("No plot types selected. Exiting.")
|
print("No plot types selected. Exiting.")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Create a figure and a set of subplots based on the number of selected plot types.
|
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
|
||||||
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
|
axes = axes.flatten()
|
||||||
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
|
|
||||||
|
|
||||||
# --- Loop through selected plot types and generate plots ---
|
# --- Loop through selected plot types and generate plots ---
|
||||||
for i, plot_type in enumerate(plot_types):
|
for i, plot_type in enumerate(plot_types):
|
||||||
ax = axes[i]
|
ax = axes[i]
|
||||||
config = plot_configs[plot_type]
|
config = plot_configs[plot_type]
|
||||||
|
|
||||||
max_data_value = 0
|
max_data_value = 0
|
||||||
for j, col_name in enumerate(config['cols']):
|
for j, col_name in enumerate(config['cols']):
|
||||||
if col_name in df.columns:
|
if col_name in df.columns:
|
||||||
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
|
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
|
||||||
# Find the maximum value in the current column to set the y-axis limit
|
|
||||||
max_col_value = df[col_name].max()
|
max_col_value = df[col_name].max()
|
||||||
if max_col_value > max_data_value:
|
if max_col_value > max_data_value:
|
||||||
max_data_value = max_col_value
|
max_data_value = max_col_value
|
||||||
@@ -86,34 +87,82 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
|||||||
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
|
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
|
||||||
|
|
||||||
# --- Dynamic Y-axis Scaling ---
|
# --- Dynamic Y-axis Scaling ---
|
||||||
ax.set_ylim(bottom=0) # Set y-axis minimum to 0
|
ax.set_ylim(bottom=0)
|
||||||
if plot_type in scale_config:
|
if plot_type in scale_config:
|
||||||
steps = scale_config[plot_type]['steps']
|
steps = scale_config[plot_type]['steps']
|
||||||
# Find the smallest step that is >= max_data_value
|
|
||||||
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
|
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
|
||||||
ax.set_ylim(top=new_max)
|
ax.set_ylim(top=new_max)
|
||||||
|
|
||||||
ax.set_title(config['title'])
|
ax.set_title(config['title'])
|
||||||
ax.set_ylabel(config['ylabel'])
|
ax.set_ylabel(config['ylabel'])
|
||||||
ax.legend()
|
ax.legend()
|
||||||
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
||||||
|
# --- Grid and Tick Configuration ---
|
||||||
|
y_min, y_max = ax.get_ylim()
|
||||||
|
|
||||||
|
# Keep the dynamic major_interval logic for tick LABELS
|
||||||
|
if plot_type == 'current' and y_max <= 2.5:
|
||||||
|
major_interval = 0.5
|
||||||
|
elif y_max <= 10:
|
||||||
|
major_interval = 2
|
||||||
|
elif y_max <= 25:
|
||||||
|
major_interval = 5
|
||||||
|
else:
|
||||||
|
major_interval = y_max / 5.0
|
||||||
|
|
||||||
|
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
|
||||||
|
ax.yaxis.set_minor_locator(MultipleLocator(1))
|
||||||
|
|
||||||
|
# Disable the default major grid, but keep the minor one
|
||||||
|
ax.yaxis.grid(False, which='major')
|
||||||
|
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
|
||||||
|
|
||||||
|
# Draw custom lines for 5 and 10 multiples, which are now the only major grid lines
|
||||||
|
for y_val in range(int(y_min), int(y_max) + 1):
|
||||||
|
if y_val == 0: continue
|
||||||
|
if y_val % 10 == 0:
|
||||||
|
ax.axhline(y=y_val, color='green', linestyle='-', linewidth=1.0, zorder=1)
|
||||||
|
elif y_val % 5 == 0:
|
||||||
|
ax.axhline(y=y_val, color='red', linestyle='-', linewidth=1.0, zorder=1)
|
||||||
|
|
||||||
|
# Keep the x-axis grid
|
||||||
|
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
|
||||||
|
|
||||||
# --- Formatting the x-axis (Time) ---
|
# --- Formatting the x-axis (Time) ---
|
||||||
local_tz = gettz()
|
local_tz = gettz()
|
||||||
last_ax = axes[-1]
|
last_ax = axes[-1]
|
||||||
# Pass the timezone to the formatter
|
|
||||||
|
if not df.empty:
|
||||||
|
last_ax.set_xlim(df['timestamp'].iloc[0], df['timestamp'].iloc[-1])
|
||||||
|
|
||||||
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
|
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
|
||||||
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
|
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
|
||||||
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})') # Display timezone name
|
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
|
||||||
plt.xticks(rotation=45)
|
plt.xticks(rotation=45)
|
||||||
|
|
||||||
# Add a main title to the figure
|
# --- Add a main title and subtitle ---
|
||||||
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
|
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
|
||||||
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
|
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
|
||||||
fig.suptitle(f'PowerMate Log ({start_time} to {end_time})', fontsize=16, y=0.95)
|
main_title = f'PowerMate Log ({start_time} to {end_time})'
|
||||||
|
|
||||||
# Adjust layout to prevent titles/labels from overlapping
|
subtitle_parts = []
|
||||||
plt.tight_layout(rect=[0, 0, 1, 0.94])
|
if avg_interval_ms > 0:
|
||||||
|
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
|
||||||
|
|
||||||
|
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
|
||||||
|
if voltage_strings:
|
||||||
|
subtitle_parts.extend(voltage_strings)
|
||||||
|
|
||||||
|
subtitle = ' | '.join(subtitle_parts)
|
||||||
|
|
||||||
|
full_title = main_title
|
||||||
|
if subtitle:
|
||||||
|
full_title += f'\n{subtitle}'
|
||||||
|
|
||||||
|
fig.suptitle(full_title, fontsize=14)
|
||||||
|
|
||||||
|
# Adjust layout to make space for the subtitle
|
||||||
|
plt.tight_layout(rect=[0, 0, 1, 0.93])
|
||||||
|
|
||||||
# --- Save the plot to a file ---
|
# --- Save the plot to a file ---
|
||||||
try:
|
try:
|
||||||
|
|||||||
Reference in New Issue
Block a user