5 Commits

Author SHA1 Message Date
797876eeac update logger README to include detailed usage instructions and examples
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-10 09:49:24 +09:00
f73c2668e3 csv_2_plot: update title margin
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-10 09:22:30 +09:00
55b5296d16 csv_2_plot: update y-axis gridline colors
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 18:19:26 +09:00
a8faa6a441 csv_2_plot: improve plot configuration and add average voltage/interval calculations
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 18:19:26 +09:00
c7188df159 logger: save time on UTC
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 16:49:12 +09:00
5 changed files with 211 additions and 69 deletions

View File

@@ -1,46 +1,140 @@
# Power Consumption Logger Example # Odroid PowerMate Logger and Plotter
Based on this script, you can monitor power consumption and implement graph plotting. This directory contains two Python scripts to log power data from an Odroid Smart Power device and visualize it.
## How to Run the Script 1. `logger.py`: Connects to the device's web server, authenticates, and logs real-time power data from its WebSocket to a CSV file.
2. `csv_2_plot.py`: Reads the generated CSV file and creates a plot image of the power, voltage, and current data over time.
### Install Python Virtual Environment ## Prerequisites
```shell ### 1. Clone this example
```bash
git clone https://github.com/hardkernel/odroid-powermate.git git clone https://github.com/hardkernel/odroid-powermate.git
cd odroid-powermate/example/logger cd odroid-powermate/example/logger
``` ```
```shell ### 2. Python and Virtual Environment
sudo apt install virtualenv
virtualenv venv It is highly recommended to use a Python virtual environment to manage project dependencies and avoid conflicts with other projects.
source venv/bin/activate
Ensure you have Python 3 installed.
1. **Create a virtual environment:**
Open your terminal in this directory and run:
```bash
python3 -m venv venv
```
This will create a `venv` directory containing the Python interpreter and libraries.
2. **Activate the virtual environment:**
* **On Windows:**
```powershell
.\venv\Scripts\activate
```
* **On macOS and Linux:**
```bash
source venv/bin/activate
```
Your terminal prompt should now show `(venv)` at the beginning, indicating that the virtual environment is active.
### 3. Install Required Libraries
With the virtual environment activated, install the necessary Python packages:
```bash
pip33 install requests websockets protobuf pandas matplotlib python-dateutil
``` ```
### Install require package ### 4. Protobuf Generated File
```shell The `logger.py` script uses Google Protocol Buffers (Protobuf) to decode real-time data from the WebSocket. This requires a Python file, `status_pb2.py`, which is generated from a Protobuf definition file (`status.proto`).
pip install grpcio-tools requests websockets protobuf pandas matplotlib
**How to Generate `status_pb2.py`:**
1. **Install Protobuf Compiler Tools:**
You need the `grpcio-tools` package, which includes the `protoc` compiler and Python plugins. You can install it via pip:
```bash
pip3 install grpcio-tools
```
2. **Locate the `.proto` file:**
Ensure you have the `status.proto` file in the current directory. This file defines the structure of the data messages.
3. **Run the Compiler:**
Execute the following command in your terminal. This command tells `protoc` to look for `status.proto` in the directory (`-I../../proto`) and generate the Python output file (`--python_out=.`) in the same place.
```bash
python3 -m grpc_tools.protoc -I../../proto --python_out=. status.proto
```
After running this command, the `status_pb2.py` file will be created, and `logger.py` will be able to use it.
## Usage
The process is a two-step workflow: first log the data, then plot it.
### Step 1: Log Power Data with `logger.py`
Run `logger.py` to connect to your Odroid Smart Power device and save the data to a CSV file.
**Syntax:**
```bash
python3 logger.py <host> -u <username> -p <password> -o <output_file.csv>
``` ```
### Build `status_pb2.py` **Arguments:**
* `host`: The IP address or hostname of the Odroid Smart Power device (e.g., `192.168.1.50`).
* `-u`, `--username`: The username for logging in.
* `-p`, `--password`: The password for logging in.
* `-o`, `--output`: The path to save the output CSV file. This is required if you want to generate a plot.
```shell **Example:**
python -m grpc_tools.protoc -I ../../proto --python_out=. status.proto
This command will log in and save the power data to `power_log.csv`.
```bash
python3 logger.py 192.168.1.50 -u admin -p mypassword -o power_log.csv
``` ```
### Execute script The script will continue to log data until you stop it with `Ctrl+C`.
#### Power consumption collection ### Step 2: Generate a Plot with `csv_2_plot.py`
```shell
# python3 logger.py -u <username> -o <name.csv> -p <password> <address> Once you have a CSV log file, you can use `csv_2_plot.py` to create a visual graph.
python3 logger.py -u admin -p password -o test.csv 192.168.30.5 You can also use the csv file recorded from PowerMate Web.
**Syntax:**
```bash
python3 csv_2_plot.py <input.csv> <output.png> [options]
``` ```
#### Plot data **Arguments:**
* `input_csv`: The path to the CSV file generated by `logger.py`.
* `output_image`: The path to save the output plot image (e.g., `plot.png`).
```shell **Optional Arguments:**
python3 csv_2_plot.py test.csv plot.png [--type power voltage current] [--source vin main usb] * `-t`, `--type`: Specify which plots to generate. Choices are `power`, `voltage`, `current`. Default is all three.
* `-s`, `--source`: Specify which power sources to include. Choices are `vin`, `main`, `usb`. Default is all three.
**Example 1: Default Plot**
This command reads `power_log.csv` and generates a plot containing power, voltage, and current for all sources, saving it as `power_graph.png`.
```bash
python3 csv_2_plot.py power_log.csv power_graph.png
``` ```
![plot.png](plot.png) **Example 2: Custom Plot**
This command generates a plot showing only the **power** and **current** for the **MAIN** and **USB** sources.
```bash
# main, usb power consumption
python csv_2_plot.py power_log.csv custom_plot.png --type power --source main usb
```
## Example Output
Running the plot script will generate an image file similar to this:
![plot.png](img/plot.png)
The 5-unit scale is highlighted with a blue dotted line, and the 10-unit scale is highlighted with a red dotted line.

View File

@@ -1,8 +1,10 @@
import argparse import argparse
import matplotlib.dates as mdates import matplotlib.dates as mdates
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
from dateutil.tz import gettz from dateutil.tz import gettz
from matplotlib.ticker import MultipleLocator
def plot_power_data(csv_path, output_path, plot_types, sources): def plot_power_data(csv_path, output_path, plot_types, sources):
@@ -19,16 +21,11 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
""" """
try: try:
# Read the CSV file into a pandas DataFrame # Read the CSV file into a pandas DataFrame
# The 'timestamp' column is parsed as dates. Pandas automatically recognizes
# the ISO format (with 'Z') as UTC.
df = pd.read_csv(csv_path, parse_dates=['timestamp']) df = pd.read_csv(csv_path, parse_dates=['timestamp'])
print(f"Successfully loaded {len(df)} records from '{csv_path}'") print(f"Successfully loaded {len(df)} records from '{csv_path}'")
# --- Timezone Conversion --- # --- Timezone Conversion ---
# Get the system's local timezone
local_tz = gettz() local_tz = gettz()
# The timestamp from CSV is already UTC-aware.
# Convert it to the system's local timezone for plotting.
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz) df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
print(f"Timestamp converted to local timezone: {local_tz}") print(f"Timestamp converted to local timezone: {local_tz}")
@@ -39,24 +36,32 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print(f"An error occurred while reading the CSV file: {e}") print(f"An error occurred while reading the CSV file: {e}")
return return
# --- Calculate Average Interval ---
avg_interval_ms = 0
if len(df) > 1:
avg_interval = df['timestamp'].diff().mean()
avg_interval_ms = avg_interval.total_seconds() * 1000
# --- Calculate Average Voltages ---
avg_voltages = {}
for source in sources:
voltage_col = f'{source}_voltage'
if voltage_col in df.columns:
avg_voltages[source] = df[voltage_col].mean()
# --- Plotting Configuration --- # --- Plotting Configuration ---
# Y-axis scale settings from chart.js
scale_config = { scale_config = {
'power': {'steps': [5, 20, 50, 160]}, 'power': {'steps': [5, 20, 50, 160]},
'voltage': {'steps': [5, 10, 15, 25]}, 'voltage': {'steps': [5, 10, 15, 25]},
'current': {'steps': [1, 2.5, 5, 10]} 'current': {'steps': [1, 2.5, 5, 10]}
} }
plot_configs = { plot_configs = {
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
'cols': [f'{s}_power' for s in sources]}, 'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
'cols': [f'{s}_voltage' for s in sources]},
'current': {'title': 'Current', 'ylabel': 'Current (A)',
'cols': [f'{s}_current' for s in sources]}
} }
channel_labels = [s.upper() for s in sources] channel_labels = [s.upper() for s in sources]
# Define a color map for all possible sources
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'} color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
channel_colors = [color_map[s] for s in sources] channel_colors = [color_map[s] for s in sources]
@@ -65,20 +70,17 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print("No plot types selected. Exiting.") print("No plot types selected. Exiting.")
return return
# Create a figure and a set of subplots based on the number of selected plot types. fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False) axes = axes.flatten()
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
# --- Loop through selected plot types and generate plots --- # --- Loop through selected plot types and generate plots ---
for i, plot_type in enumerate(plot_types): for i, plot_type in enumerate(plot_types):
ax = axes[i] ax = axes[i]
config = plot_configs[plot_type] config = plot_configs[plot_type]
max_data_value = 0 max_data_value = 0
for j, col_name in enumerate(config['cols']): for j, col_name in enumerate(config['cols']):
if col_name in df.columns: if col_name in df.columns:
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j]) ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
# Find the maximum value in the current column to set the y-axis limit
max_col_value = df[col_name].max() max_col_value = df[col_name].max()
if max_col_value > max_data_value: if max_col_value > max_data_value:
max_data_value = max_col_value max_data_value = max_col_value
@@ -86,34 +88,82 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.") print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
# --- Dynamic Y-axis Scaling --- # --- Dynamic Y-axis Scaling ---
ax.set_ylim(bottom=0) # Set y-axis minimum to 0 ax.set_ylim(bottom=0)
if plot_type in scale_config: if plot_type in scale_config:
steps = scale_config[plot_type]['steps'] steps = scale_config[plot_type]['steps']
# Find the smallest step that is >= max_data_value
new_max = next((step for step in steps if step >= max_data_value), steps[-1]) new_max = next((step for step in steps if step >= max_data_value), steps[-1])
ax.set_ylim(top=new_max) ax.set_ylim(top=new_max)
ax.set_title(config['title']) ax.set_title(config['title'])
ax.set_ylabel(config['ylabel']) ax.set_ylabel(config['ylabel'])
ax.legend() ax.legend()
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
# --- Grid and Tick Configuration ---
y_min, y_max = ax.get_ylim()
# Keep the dynamic major_interval logic for tick LABELS
if plot_type == 'current' and y_max <= 2.5:
major_interval = 0.5
elif y_max <= 10:
major_interval = 2
elif y_max <= 25:
major_interval = 5
else:
major_interval = y_max / 5.0
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
ax.yaxis.set_minor_locator(MultipleLocator(1))
# Disable the default major grid, but keep the minor one
ax.yaxis.grid(False, which='major')
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
# Draw custom lines for 5 and 10 multiples, which are now the only major grid lines
for y_val in range(int(y_min), int(y_max) + 1):
if y_val == 0: continue
if y_val % 10 == 0:
ax.axhline(y=y_val, color='maroon', linestyle='--', linewidth=1.2, zorder=1)
elif y_val % 5 == 0:
ax.axhline(y=y_val, color='midnightblue', linestyle='--', linewidth=1.2, zorder=1)
# Keep the x-axis grid
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
# --- Formatting the x-axis (Time) --- # --- Formatting the x-axis (Time) ---
local_tz = gettz() local_tz = gettz()
last_ax = axes[-1] last_ax = axes[-1]
# Pass the timezone to the formatter
if not df.empty:
last_ax.set_xlim(df['timestamp'].iloc[0], df['timestamp'].iloc[-1])
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz)) last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})') # Display timezone name plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
plt.xticks(rotation=45) plt.xticks(rotation=45)
# Add a main title to the figure # --- Add a main title and subtitle ---
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S') start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S') end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
fig.suptitle(f'PowerMate Log ({start_time} to {end_time})', fontsize=16, y=0.95) main_title = f'PowerMate Log ({start_time} to {end_time})'
# Adjust layout to prevent titles/labels from overlapping subtitle_parts = []
plt.tight_layout(rect=[0, 0, 1, 0.94]) if avg_interval_ms > 0:
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
if voltage_strings:
subtitle_parts.extend(voltage_strings)
subtitle = ' | '.join(subtitle_parts)
full_title = main_title
if subtitle:
full_title += f'\n{subtitle}'
fig.suptitle(full_title, fontsize=14)
# Adjust layout to make space for the subtitle
plt.tight_layout(rect=[0, 0, 1, 0.98])
# --- Save the plot to a file --- # --- Save the plot to a file ---
try: try:

BIN
example/logger/img/plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 239 KiB

View File

@@ -3,7 +3,7 @@ import asyncio
import csv import csv
import requests import requests
import websockets import websockets
from datetime import datetime from datetime import datetime, timezone
# Import the status_pb2.py file generated by `protoc`. # Import the status_pb2.py file generated by `protoc`.
# This file must be in the same directory as logger.py. # This file must be in the same directory as logger.py.
@@ -68,7 +68,7 @@ class OdroidPowerLogger:
csv_file = open(self.output_file, 'w', newline='', encoding='utf-8') csv_file = open(self.output_file, 'w', newline='', encoding='utf-8')
csv_writer = csv.writer(csv_file) csv_writer = csv.writer(csv_file)
# Write header - matches main.js and csv_2_plot.py expectations # Write header
header = [ header = [
'timestamp', 'uptime_ms', 'timestamp', 'uptime_ms',
'vin_voltage', 'vin_current', 'vin_power', 'vin_voltage', 'vin_current', 'vin_power',
@@ -97,27 +97,25 @@ class OdroidPowerLogger:
# Process only if the payload type is 'sensor_data' # Process only if the payload type is 'sensor_data'
if status_message.WhichOneof('payload') == 'sensor_data': if status_message.WhichOneof('payload') == 'sensor_data':
sensor_data = status_message.sensor_data sensor_data = status_message.sensor_data
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000, tz=timezone.utc)
# Format timestamp to ISO format with 'Z' for UTC, matching main.js ts_str_print = ts_dt.strftime('%Y-%m-%d %H:%M:%S UTC')
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000)
ts_iso = ts_dt.isoformat(timespec='milliseconds') + 'Z'
# Print data for console output (can be adjusted if needed) print(f"--- {ts_str_print} (Uptime: {sensor_data.uptime_ms / 1000}s) ---")
print(f"--- {ts_iso} (Uptime: {sensor_data.uptime_ms / 1000:.3f}s) ---")
# Print data for each channel
for name, channel in [('VIN', sensor_data.vin), ('MAIN', sensor_data.main), for name, channel in [('VIN', sensor_data.vin), ('MAIN', sensor_data.main),
('USB', sensor_data.usb)]: ('USB', sensor_data.usb)]:
print( print(
f" {name:<4}: {channel.voltage:.3f} V | {channel.current:.3f} A | {channel.power:.3f} W") f" {name:<4}: {channel.voltage:5.2f} V | {channel.current:5.3f} A | {channel.power:5.2f} W")
# Write to CSV if enabled # Write to CSV if enabled
if csv_writer: if csv_writer:
# Format numerical values to 3 decimal places, matching main.js ts_iso_csv = ts_dt.isoformat(timespec='milliseconds').replace('+00:00', 'Z')
row = [ row = [
ts_iso, ts_iso_csv, sensor_data.uptime_ms,
sensor_data.uptime_ms, sensor_data.vin.voltage, sensor_data.vin.current, sensor_data.vin.power,
f"{sensor_data.vin.voltage:.3f}", f"{sensor_data.vin.current:.3f}", f"{sensor_data.vin.power:.3f}", sensor_data.main.voltage, sensor_data.main.current, sensor_data.main.power,
f"{sensor_data.main.voltage:.3f}", f"{sensor_data.main.current:.3f}", f"{sensor_data.main.power:.3f}", sensor_data.usb.voltage, sensor_data.usb.current, sensor_data.usb.power
f"{sensor_data.usb.voltage:.3f}", f"{sensor_data.usb.current:.3f}", f"{sensor_data.usb.power:.3f}"
] ]
csv_writer.writerow(row) csv_writer.writerow(row)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 272 KiB