import argparse import matplotlib.dates as mdates import matplotlib.pyplot as plt import os import pandas as pd def plot_power_data(csv_path, output_path): """ Reads power data from a CSV file and generates a plot image. Args: csv_path (str): The path to the input CSV file. output_path (str): The path to save the output plot image. """ try: # Read the CSV file into a pandas DataFrame # The 'timestamp' column is parsed as dates df = pd.read_csv(csv_path, parse_dates=['timestamp']) print(f"Successfully loaded {len(df)} records from '{csv_path}'") except FileNotFoundError: print(f"Error: The file '{csv_path}' was not found.") return except Exception as e: print(f"An error occurred while reading the CSV file: {e}") return # Create a figure and a set of subplots (3 rows, 1 column) # sharex=True makes all subplots share the same x-axis (time) fig, axes = plt.subplots(3, 1, figsize=(15, 18), sharex=True) # --- Plot 1: Power (W) --- ax1 = axes[0] ax1.plot(df['timestamp'], df['vin_power'], label='VIN', color='red') ax1.plot(df['timestamp'], df['main_power'], label='MAIN', color='green') ax1.plot(df['timestamp'], df['usb_power'], label='USB', color='blue') ax1.set_title('Power Consumption') ax1.set_ylabel('Power (W)') ax1.legend() ax1.grid(True, which='both', linestyle='--', linewidth=0.5) # --- Plot 2: Voltage (V) --- ax2 = axes[1] ax2.plot(df['timestamp'], df['vin_voltage'], label='VIN', color='red') ax2.plot(df['timestamp'], df['main_voltage'], label='MAIN', color='green') ax2.plot(df['timestamp'], df['usb_voltage'], label='USB', color='blue') ax2.set_title('Voltage') ax2.set_ylabel('Voltage (V)') ax2.legend() ax2.grid(True, which='both', linestyle='--', linewidth=0.5) # --- Plot 3: Current (A) --- ax3 = axes[2] ax3.plot(df['timestamp'], df['vin_current'], label='VIN', color='red') ax3.plot(df['timestamp'], df['main_current'], label='MAIN', color='green') ax3.plot(df['timestamp'], df['usb_current'], label='USB', color='blue') ax3.set_title('Current') ax3.set_ylabel('Current (A)') ax3.legend() ax3.grid(True, which='both', linestyle='--', linewidth=0.5) # --- Formatting the x-axis (Time) --- # Improve date formatting on the x-axis ax3.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax3.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks plt.xlabel('Time') plt.xticks(rotation=45) # Add a main title to the figure start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S') end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S') fig.suptitle(f'ODROID Power Log ({start_time} to {end_time})', fontsize=16, y=0.95) # Adjust layout to prevent titles/labels from overlapping plt.tight_layout(rect=[0, 0, 1, 0.94]) # --- Save the plot to a file --- try: plt.savefig(output_path, dpi=150) print(f"Plot successfully saved to '{output_path}'") except Exception as e: print(f"An error occurred while saving the plot: {e}") def main(): parser = argparse.ArgumentParser(description="Generate a plot from an Odroid PowerMate CSV log file.") parser.add_argument("input_csv", help="Path to the input CSV log file.") parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).") args = parser.parse_args() plot_power_data(args.input_csv, args.output_image) if __name__ == "__main__": main()