Files
odroid-power-mate/example/logger/csv_2_plot.py

259 lines
10 KiB
Python

import argparse
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.tz import gettz
from matplotlib.ticker import MultipleLocator, FuncFormatter
def plot_power_data(csv_path, output_path, plot_types, sources,
voltage_y_max=None, current_y_max=None, power_y_max=None,
relative_time=False, time_x_line=None, time_x_label=None):
"""
Reads power data from a CSV file and generates a plot image.
Args:
csv_path (str): The path to the input CSV file.
output_path (str): The path to save the output plot image.
plot_types (list): A list of strings indicating which plots to generate.
sources (list): A list of strings indicating which power sources to plot.
voltage_y_max (float, optional): Maximum value for the voltage plot's Y-axis.
current_y_max (float, optional): Maximum value for the current plot's Y-axis.
power_y_max (float, optional): Maximum value for the power plot's Y-axis.
relative_time (bool): If True, the x-axis will show elapsed time from the start.
time_x_line (float, optional): Interval in seconds for x-axis grid lines.
time_x_label (float, optional): Interval in seconds for x-axis labels.
"""
try:
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
if df.empty:
print("CSV file is empty. Exiting.")
return
# --- Time Handling ---
x_axis_data = df['timestamp']
if relative_time:
start_time = df['timestamp'].iloc[0]
df['elapsed_seconds'] = (df['timestamp'] - start_time).dt.total_seconds()
x_axis_data = df['elapsed_seconds']
print("X-axis set to relative time (elapsed seconds).")
else:
# --- Timezone Conversion for absolute time ---
local_tz = gettz()
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
print(f"Timestamp converted to local timezone: {local_tz}")
except FileNotFoundError:
print(f"Error: The file '{csv_path}' was not found.")
return
except Exception as e:
print(f"An error occurred while reading the CSV file: {e}")
return
# --- Calculate Average Interval ---
avg_interval_ms = 0
if len(df) > 1:
avg_interval = df['timestamp'].diff().mean()
avg_interval_ms = avg_interval.total_seconds() * 1000
# --- Calculate Average Voltages ---
avg_voltages = {}
for source in sources:
voltage_col = f'{source}_voltage'
if voltage_col in df.columns:
avg_voltages[source] = df[voltage_col].mean()
# --- Plotting Configuration ---
scale_config = {
'power': {'steps': [5, 20, 50, 160]},
'voltage': {'steps': [5, 10, 15, 25]},
'current': {'steps': [1, 2.5, 5, 10]}
}
plot_configs = {
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
}
y_max_options = {
'power': power_y_max,
'voltage': voltage_y_max,
'current': current_y_max
}
channel_labels = [s.upper() for s in sources]
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
channel_colors = [color_map[s] for s in sources]
num_plots = len(plot_types)
if num_plots == 0:
print("No plot types selected. Exiting.")
return
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
axes = axes.flatten()
# --- Loop through selected plot types and generate plots ---
for i, plot_type in enumerate(plot_types):
ax = axes[i]
config = plot_configs[plot_type]
max_data_value = 0
for j, col_name in enumerate(config['cols']):
if col_name in df.columns:
ax.plot(x_axis_data, df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
max_col_value = df[col_name].max()
if max_col_value > max_data_value:
max_data_value = max_col_value
else:
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
# --- Dynamic Y-axis Scaling ---
ax.set_ylim(bottom=0)
y_max_option = y_max_options.get(plot_type)
if y_max_option is not None:
ax.set_ylim(top=y_max_option)
elif plot_type in scale_config:
steps = scale_config[plot_type]['steps']
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
ax.set_ylim(top=new_max)
ax.set_title(config['title'])
ax.set_ylabel(config['ylabel'])
ax.legend()
# --- Y-Grid and Tick Configuration ---
y_min, y_max = ax.get_ylim()
if plot_type == 'current' and y_max <= 2.5: major_interval = 0.5
elif y_max <= 10: major_interval = 2
elif y_max <= 25: major_interval = 5
else: major_interval = y_max / 5.0
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
ax.yaxis.set_minor_locator(MultipleLocator(1))
ax.yaxis.grid(False, which='major')
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
for y_val in range(int(y_min), int(y_max) + 1):
if y_val == 0: continue
if y_val % 10 == 0:
ax.axhline(y=y_val, color='maroon', linestyle='--', linewidth=1.2, zorder=1)
elif y_val % 5 == 0:
ax.axhline(y=y_val, color='midnightblue', linestyle='--', linewidth=1.2, zorder=1)
# --- X-Grid Configuration ---
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
if time_x_line is not None:
ax.xaxis.grid(True, which='minor', linestyle=':', linewidth=0.6)
# --- Formatting the x-axis ---
last_ax = axes[-1]
if not df.empty:
last_ax.set_xlim(x_axis_data.iloc[0], x_axis_data.iloc[-1])
if relative_time:
plt.xlabel('Elapsed Time (seconds)')
if time_x_label is not None:
last_ax.xaxis.set_major_locator(MultipleLocator(time_x_label))
else:
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
if time_x_line is not None:
last_ax.xaxis.set_minor_locator(MultipleLocator(time_x_line))
else:
local_tz = gettz()
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
if time_x_label is not None:
last_ax.xaxis.set_major_locator(mdates.SecondLocator(interval=int(time_x_label)))
else:
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
if time_x_line is not None:
last_ax.xaxis.set_minor_locator(mdates.SecondLocator(interval=int(time_x_line)))
plt.xticks(rotation=45)
# --- Add a main title and subtitle ---
if relative_time:
main_title = 'PowerMate Log'
else:
start_time_str = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
end_time_str = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
main_title = f'PowerMate Log ({start_time_str} to {end_time_str})'
subtitle_parts = []
if avg_interval_ms > 0:
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
if voltage_strings:
subtitle_parts.extend(voltage_strings)
subtitle = ' | '.join(subtitle_parts)
full_title = main_title
if subtitle:
full_title += f'\n{subtitle}'
fig.suptitle(full_title, fontsize=14)
plt.tight_layout(rect=[0, 0, 1, 0.98])
# --- Save the plot to a file ---
try:
plt.savefig(output_path, dpi=150)
print(f"Plot successfully saved to '{output_path}'")
except Exception as e:
print(f"An error occurred while saving the plot: {e}")
def main():
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid PowerMate CSV log file.")
parser.add_argument("input_csv", help="Path to the input CSV log file.")
parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).")
parser.add_argument(
"-t", "--type",
nargs='+',
choices=['power', 'voltage', 'current'],
default=['power', 'voltage', 'current'],
help="Types of plots to generate. Choose from 'power', 'voltage', 'current'. "
"Default is to generate all three."
)
parser.add_argument(
"-s", "--source",
nargs='+',
choices=['vin', 'main', 'usb'],
default=['vin', 'main', 'usb'],
help="Power sources to plot. Choose from 'vin', 'main', 'usb'. "
"Default is to plot all three."
)
parser.add_argument("--voltage_y_max", type=float, help="Maximum value for the voltage plot's Y-axis.")
parser.add_argument("--current_y_max", type=float, help="Maximum value for the current plot's Y-axis.")
parser.add_argument("--power_y_max", type=float, help="Maximum value for the power plot's Y-axis.")
parser.add_argument(
"-r", "--relative-time",
action='store_true',
help="Display the x-axis as elapsed time from the start (in seconds) instead of absolute time."
)
parser.add_argument("--time_x_line", type=float, help="Interval in seconds for x-axis grid lines.")
parser.add_argument("--time_x_label", type=float, help="Interval in seconds for x-axis labels.")
args = parser.parse_args()
plot_power_data(
args.input_csv,
args.output_image,
args.type,
args.source,
voltage_y_max=args.voltage_y_max,
current_y_max=args.current_y_max,
power_y_max=args.power_y_max,
relative_time=args.relative_time,
time_x_line=args.time_x_line,
time_x_label=args.time_x_label
)
if __name__ == "__main__":
main()