153 lines
6.1 KiB
Python
153 lines
6.1 KiB
Python
import argparse
|
|
import matplotlib.dates as mdates
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
from dateutil.tz import gettz
|
|
|
|
|
|
def plot_power_data(csv_path, output_path, plot_types, sources):
|
|
"""
|
|
Reads power data from a CSV file and generates a plot image.
|
|
|
|
Args:
|
|
csv_path (str): The path to the input CSV file.
|
|
output_path (str): The path to save the output plot image.
|
|
plot_types (list): A list of strings indicating which plots to generate
|
|
(e.g., ['power', 'voltage', 'current']).
|
|
sources (list): A list of strings indicating which power sources to plot
|
|
(e.g., ['vin', 'main', 'usb']).
|
|
"""
|
|
try:
|
|
# Read the CSV file into a pandas DataFrame
|
|
# The 'timestamp' column is parsed as dates. Pandas automatically recognizes
|
|
# the ISO format (with 'Z') as UTC.
|
|
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
|
|
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
|
|
|
|
# --- Timezone Conversion ---
|
|
# Get the system's local timezone
|
|
local_tz = gettz()
|
|
# The timestamp from CSV is already UTC-aware.
|
|
# Convert it to the system's local timezone for plotting.
|
|
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
|
|
print(f"Timestamp converted to local timezone: {local_tz}")
|
|
|
|
except FileNotFoundError:
|
|
print(f"Error: The file '{csv_path}' was not found.")
|
|
return
|
|
except Exception as e:
|
|
print(f"An error occurred while reading the CSV file: {e}")
|
|
return
|
|
|
|
# --- Plotting Configuration ---
|
|
# Y-axis scale settings from chart.js
|
|
scale_config = {
|
|
'power': {'steps': [5, 20, 50, 160]},
|
|
'voltage': {'steps': [5, 10, 15, 25]},
|
|
'current': {'steps': [1, 2.5, 5, 10]}
|
|
}
|
|
|
|
plot_configs = {
|
|
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
|
|
'cols': [f'{s}_power' for s in sources]},
|
|
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
|
|
'cols': [f'{s}_voltage' for s in sources]},
|
|
'current': {'title': 'Current', 'ylabel': 'Current (A)',
|
|
'cols': [f'{s}_current' for s in sources]}
|
|
}
|
|
channel_labels = [s.upper() for s in sources]
|
|
# Define a color map for all possible sources
|
|
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
|
|
channel_colors = [color_map[s] for s in sources]
|
|
|
|
num_plots = len(plot_types)
|
|
if num_plots == 0:
|
|
print("No plot types selected. Exiting.")
|
|
return
|
|
|
|
# Create a figure and a set of subplots based on the number of selected plot types.
|
|
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
|
|
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
|
|
|
|
# --- Loop through selected plot types and generate plots ---
|
|
for i, plot_type in enumerate(plot_types):
|
|
ax = axes[i]
|
|
config = plot_configs[plot_type]
|
|
|
|
max_data_value = 0
|
|
for j, col_name in enumerate(config['cols']):
|
|
if col_name in df.columns:
|
|
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
|
|
# Find the maximum value in the current column to set the y-axis limit
|
|
max_col_value = df[col_name].max()
|
|
if max_col_value > max_data_value:
|
|
max_data_value = max_col_value
|
|
else:
|
|
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
|
|
|
|
# --- Dynamic Y-axis Scaling ---
|
|
ax.set_ylim(bottom=0) # Set y-axis minimum to 0
|
|
if plot_type in scale_config:
|
|
steps = scale_config[plot_type]['steps']
|
|
# Find the smallest step that is >= max_data_value
|
|
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
|
|
ax.set_ylim(top=new_max)
|
|
|
|
ax.set_title(config['title'])
|
|
ax.set_ylabel(config['ylabel'])
|
|
ax.legend()
|
|
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
|
|
# --- Formatting the x-axis (Time) ---
|
|
local_tz = gettz()
|
|
last_ax = axes[-1]
|
|
# Pass the timezone to the formatter
|
|
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
|
|
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
|
|
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})') # Display timezone name
|
|
plt.xticks(rotation=45)
|
|
|
|
# Add a main title to the figure
|
|
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
|
|
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
|
|
fig.suptitle(f'PowerMate Log ({start_time} to {end_time})', fontsize=16, y=0.95)
|
|
|
|
# Adjust layout to prevent titles/labels from overlapping
|
|
plt.tight_layout(rect=[0, 0, 1, 0.94])
|
|
|
|
# --- Save the plot to a file ---
|
|
try:
|
|
plt.savefig(output_path, dpi=150)
|
|
print(f"Plot successfully saved to '{output_path}'")
|
|
except Exception as e:
|
|
print(f"An error occurred while saving the plot: {e}")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid PowerMate CSV log file.")
|
|
parser.add_argument("input_csv", help="Path to the input CSV log file.")
|
|
parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).")
|
|
parser.add_argument(
|
|
"-t", "--type",
|
|
nargs='+',
|
|
choices=['power', 'voltage', 'current'],
|
|
default=['power', 'voltage', 'current'],
|
|
help="Types of plots to generate. Choose from 'power', 'voltage', 'current'. "
|
|
"Default is to generate all three."
|
|
)
|
|
parser.add_argument(
|
|
"-s", "--source",
|
|
nargs='+',
|
|
choices=['vin', 'main', 'usb'],
|
|
default=['vin', 'main', 'usb'],
|
|
help="Power sources to plot. Choose from 'vin', 'main', 'usb'. "
|
|
"Default is to plot all three."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
plot_power_data(args.input_csv, args.output_image, args.type, args.source)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|