Files
odroid-power-mate/example/logger/csv_2_plot.py
2025-11-20 09:02:06 +09:00

109 lines
4.2 KiB
Python

import argparse
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import os
import pandas as pd
def plot_power_data(csv_path, output_path, plot_types):
"""
Reads power data from a CSV file and generates a plot image.
Args:
csv_path (str): The path to the input CSV file.
output_path (str): The path to save the output plot image.
plot_types (list): A list of strings indicating which plots to generate
(e.g., ['power', 'voltage', 'current']).
"""
try:
# Read the CSV file into a pandas DataFrame
# The 'timestamp' column is parsed as dates
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
except FileNotFoundError:
print(f"Error: The file '{csv_path}' was not found.")
return
except Exception as e:
print(f"An error occurred while reading the CSV file: {e}")
return
# --- Plotting Configuration ---
plot_configs = {
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
'cols': ['vin_power', 'main_power', 'usb_power']},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
'cols': ['vin_voltage', 'main_voltage', 'usb_voltage']},
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': ['vin_current', 'main_current', 'usb_current']}
}
channel_labels = ['VIN', 'MAIN', 'USB']
channel_colors = ['red', 'green', 'blue']
num_plots = len(plot_types)
if num_plots == 0:
print("No plot types selected. Exiting.")
return
# Create a figure and a set of subplots based on the number of selected plot types.
# sharex=True makes all subplots share the same x-axis (time)
# squeeze=False ensures that 'axes' is always a 2D array, even if num_plots is 1.
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
# --- Loop through selected plot types and generate plots ---
for i, plot_type in enumerate(plot_types):
ax = axes[i]
config = plot_configs[plot_type]
for j, col_name in enumerate(config['cols']):
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
ax.set_title(config['title'])
ax.set_ylabel(config['ylabel'])
ax.legend()
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
# --- Formatting the x-axis (Time) ---
# Improve date formatting on the x-axis
# Apply formatting to the last subplot's x-axis
last_ax = axes[-1]
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
plt.xlabel('Time')
plt.xticks(rotation=45)
# Add a main title to the figure
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
fig.suptitle(f'ODROID Power Log ({start_time} to {end_time})', fontsize=16, y=0.95)
# Adjust layout to prevent titles/labels from overlapping
plt.tight_layout(rect=[0, 0, 1, 0.94])
# --- Save the plot to a file ---
try:
plt.savefig(output_path, dpi=150)
print(f"Plot successfully saved to '{output_path}'")
except Exception as e:
print(f"An error occurred while saving the plot: {e}")
def main():
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid Smart Power CSV log file.")
parser.add_argument("input_csv", help="Path to the input CSV log file.")
parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).")
parser.add_argument(
"-t", "--type",
nargs='+',
choices=['power', 'voltage', 'current'],
default=['power', 'voltage', 'current'],
help="Types of plots to generate. Choose from 'power', 'voltage', 'current'. "
"Default is to generate all three."
)
args = parser.parse_args()
plot_power_data(args.input_csv, args.output_image, args.type)
if __name__ == "__main__":
main()