Files
odroid-power-mate/example/logger/csv_2_plot.py

261 lines
10 KiB
Python

import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.tz import gettz
from matplotlib.ticker import MultipleLocator, FuncFormatter
def plot_power_data(csv_path, output_path, plot_types, sources,
voltage_y_max=None, current_y_max=None, power_y_max=None,
relative_time=False, time_x_line=None, time_x_label=None):
"""
Reads power data from a CSV file and generates a plot image.
Args:
csv_path (str): The path to the input CSV file.
output_path (str): The path to save the output plot image.
plot_types (list): A list of strings indicating which plots to generate.
sources (list): A list of strings indicating which power sources to plot.
voltage_y_max (float, optional): Maximum value for the voltage plot's Y-axis.
current_y_max (float, optional): Maximum value for the current plot's Y-axis.
power_y_max (float, optional): Maximum value for the power plot's Y-axis.
relative_time (bool): If True, the x-axis will show elapsed time from the start.
time_x_line (float, optional): Interval in seconds for x-axis grid lines.
time_x_label (float, optional): Interval in seconds for x-axis labels.
"""
try:
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
if df.empty:
print("CSV file is empty. Exiting.")
return
# --- Time Handling ---
x_axis_data = df['timestamp']
if relative_time:
start_time = df['timestamp'].iloc[0]
df['elapsed_seconds'] = (df['timestamp'] - start_time).dt.total_seconds()
x_axis_data = df['elapsed_seconds']
print("X-axis set to relative time (elapsed seconds).")
else:
# --- Timezone Conversion for absolute time ---
local_tz = gettz()
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
print(f"Timestamp converted to local timezone: {local_tz}")
except FileNotFoundError:
print(f"Error: The file '{csv_path}' was not found.")
return
except Exception as e:
print(f"An error occurred while reading the CSV file: {e}")
return
# --- Calculate Average Interval ---
avg_interval_ms = 0
if len(df) > 1:
avg_interval = df['timestamp'].diff().mean()
avg_interval_ms = avg_interval.total_seconds() * 1000
# --- Calculate Average Voltages ---
avg_voltages = {}
for source in sources:
voltage_col = f'{source}_voltage'
if voltage_col in df.columns:
avg_voltages[source] = df[voltage_col].mean()
# --- Plotting Configuration ---
scale_config = {
'power': {'steps': [5, 20, 50, 160]},
'voltage': {'steps': [5, 10, 15, 25]},
'current': {'steps': [1, 2.5, 5, 10]}
}
plot_configs = {
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
}
y_max_options = {
'power': power_y_max,
'voltage': voltage_y_max,
'current': current_y_max
}
channel_labels = [s.upper() for s in sources]
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
channel_colors = [color_map[s] for s in sources]
num_plots = len(plot_types)
if num_plots == 0:
print("No plot types selected. Exiting.")
return
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
axes = axes.flatten()
# --- Loop through selected plot types and generate plots ---
for i, plot_type in enumerate(plot_types):
ax = axes[i]
config = plot_configs[plot_type]
max_data_value = 0
for j, col_name in enumerate(config['cols']):
if col_name in df.columns:
ax.plot(x_axis_data, df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
max_col_value = df[col_name].max()
if max_col_value > max_data_value:
max_data_value = max_col_value
else:
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
# --- Dynamic Y-axis Scaling ---
ax.set_ylim(bottom=0)
y_max_option = y_max_options.get(plot_type)
if y_max_option is not None:
ax.set_ylim(top=y_max_option)
elif plot_type in scale_config:
steps = scale_config[plot_type]['steps']
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
ax.set_ylim(top=new_max)
ax.set_title(config['title'])
ax.set_ylabel(config['ylabel'])
ax.legend()
# --- Y-Grid and Tick Configuration ---
y_min, y_max = ax.get_ylim()
if plot_type == 'current' and y_max <= 2.5: major_interval = 0.5
elif y_max <= 10: major_interval = 2
elif y_max <= 25: major_interval = 5
else: major_interval = y_max / 5.0
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
ax.yaxis.set_minor_locator(MultipleLocator(1))
ax.yaxis.grid(False, which='major')
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
for y_val in range(int(y_min), int(y_max) + 1):
if y_val == 0: continue
if y_val % 10 == 0:
ax.axhline(y=y_val, color='maroon', linestyle='--', linewidth=1.2, zorder=1)
elif y_val % 5 == 0:
ax.axhline(y=y_val, color='midnightblue', linestyle='--', linewidth=1.2, zorder=1)
# --- X-Grid Configuration ---
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
if time_x_line is not None:
ax.xaxis.grid(True, which='minor', linestyle=':', linewidth=0.6)
# --- Formatting the x-axis ---
last_ax = axes[-1]
if not df.empty:
last_ax.set_xlim(x_axis_data.iloc[0], x_axis_data.iloc[-1])
if relative_time:
plt.xlabel('Elapsed Time (seconds)')
if time_x_label is not None:
last_ax.xaxis.set_major_locator(MultipleLocator(time_x_label))
else:
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
if time_x_line is not None:
last_ax.xaxis.set_minor_locator(MultipleLocator(time_x_line))
else:
local_tz = gettz()
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
if time_x_label is not None:
last_ax.xaxis.set_major_locator(mdates.SecondLocator(interval=int(time_x_label)))
else:
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
if time_x_line is not None:
last_ax.xaxis.set_minor_locator(mdates.SecondLocator(interval=int(time_x_line)))
plt.xticks(rotation=45)
# --- Add a main title and subtitle ---
if relative_time:
main_title = 'PowerMate Log'
else:
start_time_str = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
end_time_str = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
main_title = f'PowerMate Log ({start_time_str} to {end_time_str})'
subtitle_parts = []
if avg_interval_ms > 0:
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
if voltage_strings:
subtitle_parts.extend(voltage_strings)
subtitle = ' | '.join(subtitle_parts)
full_title = main_title
if subtitle:
full_title += f'\n{subtitle}'
fig.suptitle(full_title, fontsize=14)
plt.tight_layout(rect=[0, 0, 1, 0.98])
# --- Save the plot to a file ---
try:
plt.savefig(output_path, dpi=150)
print(f"Plot successfully saved to '{output_path}'")
except Exception as e:
print(f"An error occurred while saving the plot: {e}")
def main():
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid PowerMate CSV log file.")
parser.add_argument("input_csv", help="Path to the input CSV log file.")
parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).")
parser.add_argument(
"-t", "--type",
nargs='+',
choices=['power', 'voltage', 'current'],
default=['power', 'voltage', 'current'],
help="Types of plots to generate. Choose from 'power', 'voltage', 'current'. "
"Default is to generate all three."
)
parser.add_argument(
"-s", "--source",
nargs='+',
choices=['vin', 'main', 'usb'],
default=['vin', 'main', 'usb'],
help="Power sources to plot. Choose from 'vin', 'main', 'usb'. "
"Default is to plot all three."
)
parser.add_argument("--voltage_y_max", type=float, help="Maximum value for the voltage plot's Y-axis.")
parser.add_argument("--current_y_max", type=float, help="Maximum value for the current plot's Y-axis.")
parser.add_argument("--power_y_max", type=float, help="Maximum value for the power plot's Y-axis.")
parser.add_argument(
"-r", "--relative-time",
action='store_true',
help="Display the x-axis as elapsed time from the start (in seconds) instead of absolute time."
)
parser.add_argument("--time_x_line", type=float, help="Interval in seconds for x-axis grid lines.")
parser.add_argument("--time_x_label", type=float, help="Interval in seconds for x-axis labels.")
args = parser.parse_args()
plot_power_data(
args.input_csv,
args.output_image,
args.type,
args.source,
voltage_y_max=args.voltage_y_max,
current_y_max=args.current_y_max,
power_y_max=args.power_y_max,
relative_time=args.relative_time,
time_x_line=args.time_x_line,
time_x_label=args.time_x_label
)
if __name__ == "__main__":
main()