Compare commits
14 Commits
55b5296d16
...
v1.1.2
| Author | SHA1 | Date | |
|---|---|---|---|
| 9cb4734093 | |||
| b734915040 | |||
| a84b504733 | |||
| 222de64932 | |||
| 1f35c52261 | |||
| 14440094ac | |||
| 11f9c72543 | |||
| c98e735410 | |||
| 5a505a5205 | |||
| 6a5ec86505 | |||
| e20f4b9f74 | |||
| 56e1f619e1 | |||
| 8930a36eaf | |||
| 194474fdff |
@@ -1,46 +1,140 @@
|
||||
# Power Consumption Logger Example
|
||||
# Odroid PowerMate Logger and Plotter
|
||||
|
||||
Based on this script, you can monitor power consumption and implement graph plotting.
|
||||
This directory contains two Python scripts to log power data from an Odroid PowerMate device and visualize it.
|
||||
|
||||
## How to Run the Script
|
||||
1. `logger.py`: Connects to the device's web server, authenticates, and logs real-time power data from its WebSocket to a CSV file.
|
||||
2. `csv_2_plot.py`: Reads the generated CSV file and creates a plot image of the power, voltage, and current data over time.
|
||||
|
||||
### Install Python Virtual Environment
|
||||
## Prerequisites
|
||||
|
||||
```shell
|
||||
### 1. Clone this example
|
||||
```bash
|
||||
git clone https://github.com/hardkernel/odroid-powermate.git
|
||||
cd odroid-powermate/example/logger
|
||||
```
|
||||
|
||||
```shell
|
||||
sudo apt install virtualenv
|
||||
virtualenv venv
|
||||
source venv/bin/activate
|
||||
### 2. Python and Virtual Environment
|
||||
|
||||
It is highly recommended to use a Python virtual environment to manage project dependencies and avoid conflicts with other projects.
|
||||
|
||||
Ensure you have Python 3 installed.
|
||||
|
||||
1. **Create a virtual environment:**
|
||||
Open your terminal in this directory and run:
|
||||
```bash
|
||||
python3 -m venv venv
|
||||
```
|
||||
This will create a `venv` directory containing the Python interpreter and libraries.
|
||||
|
||||
2. **Activate the virtual environment:**
|
||||
* **On Windows:**
|
||||
```powershell
|
||||
.\venv\Scripts\activate
|
||||
```
|
||||
* **On macOS and Linux:**
|
||||
```bash
|
||||
source venv/bin/activate
|
||||
```
|
||||
Your terminal prompt should now show `(venv)` at the beginning, indicating that the virtual environment is active.
|
||||
|
||||
### 3. Install Required Libraries
|
||||
|
||||
With the virtual environment activated, install the necessary Python packages:
|
||||
|
||||
```bash
|
||||
pip3 install requests websockets protobuf pandas matplotlib python-dateutil
|
||||
```
|
||||
|
||||
### Install require package
|
||||
### 4. Protobuf Generated File
|
||||
|
||||
```shell
|
||||
pip install grpcio-tools requests websockets protobuf pandas matplotlib
|
||||
The `logger.py` script uses Google Protocol Buffers (Protobuf) to decode real-time data from the WebSocket. This requires a Python file, `status_pb2.py`, which is generated from a Protobuf definition file (`status.proto`).
|
||||
|
||||
**How to Generate `status_pb2.py`:**
|
||||
|
||||
1. **Install Protobuf Compiler Tools:**
|
||||
You need the `grpcio-tools` package, which includes the `protoc` compiler and Python plugins. You can install it via pip:
|
||||
```bash
|
||||
pip3 install grpcio-tools
|
||||
```
|
||||
|
||||
2. **Locate the `.proto` file:**
|
||||
Ensure you have the `status.proto` file in the current directory. This file defines the structure of the data messages.
|
||||
|
||||
3. **Run the Compiler:**
|
||||
Execute the following command in your terminal. This command tells `protoc` to look for `status.proto` in the directory (`-I../../proto`) and generate the Python output file (`--python_out=.`) in the same place.
|
||||
```bash
|
||||
python3 -m grpc_tools.protoc -I../../proto --python_out=. status.proto
|
||||
```
|
||||
After running this command, the `status_pb2.py` file will be created, and `logger.py` will be able to use it.
|
||||
|
||||
## Usage
|
||||
|
||||
The process is a two-step workflow: first log the data, then plot it.
|
||||
|
||||
### Step 1: Log Power Data with `logger.py`
|
||||
|
||||
Run `logger.py` to connect to your Odroid Smart Power device and save the data to a CSV file.
|
||||
|
||||
**Syntax:**
|
||||
```bash
|
||||
python3 logger.py <host> -u <username> -p <password> -o <output_file.csv>
|
||||
```
|
||||
|
||||
### Build `status_pb2.py`
|
||||
**Arguments:**
|
||||
* `host`: The IP address or hostname of the Odroid Smart Power device (e.g., `192.168.1.50`).
|
||||
* `-u`, `--username`: The username for logging in.
|
||||
* `-p`, `--password`: The password for logging in.
|
||||
* `-o`, `--output`: The path to save the output CSV file. This is required if you want to generate a plot.
|
||||
|
||||
```shell
|
||||
python -m grpc_tools.protoc -I ../../proto --python_out=. status.proto
|
||||
**Example:**
|
||||
|
||||
This command will log in and save the power data to `power_log.csv`.
|
||||
|
||||
```bash
|
||||
python3 logger.py 192.168.1.50 -u admin -p mypassword -o power_log.csv
|
||||
```
|
||||
|
||||
### Execute script
|
||||
The script will continue to log data until you stop it with `Ctrl+C`.
|
||||
|
||||
#### Power consumption collection
|
||||
```shell
|
||||
# python3 logger.py -u <username> -o <name.csv> -p <password> <address>
|
||||
python3 logger.py -u admin -p password -o test.csv 192.168.30.5
|
||||
### Step 2: Generate a Plot with `csv_2_plot.py`
|
||||
|
||||
Once you have a CSV log file, you can use `csv_2_plot.py` to create a visual graph.
|
||||
You can also use the csv file recorded from PowerMate Web.
|
||||
|
||||
**Syntax:**
|
||||
```bash
|
||||
python3 csv_2_plot.py <input.csv> <output.png> [options]
|
||||
```
|
||||
|
||||
#### Plot data
|
||||
**Arguments:**
|
||||
* `input_csv`: The path to the CSV file generated by `logger.py`.
|
||||
* `output_image`: The path to save the output plot image (e.g., `plot.png`).
|
||||
|
||||
```shell
|
||||
python3 csv_2_plot.py test.csv plot.png [--type power voltage current] [--source vin main usb]
|
||||
**Optional Arguments:**
|
||||
* `-t`, `--type`: Specify which plots to generate. Choices are `power`, `voltage`, `current`. Default is all three.
|
||||
* `-s`, `--source`: Specify which power sources to include. Choices are `vin`, `main`, `usb`. Default is all three.
|
||||
|
||||
**Example 1: Default Plot**
|
||||
|
||||
This command reads `power_log.csv` and generates a plot containing power, voltage, and current for all sources, saving it as `power_graph.png`.
|
||||
|
||||
```bash
|
||||
python3 csv_2_plot.py power_log.csv power_graph.png
|
||||
```
|
||||
|
||||

|
||||
**Example 2: Custom Plot**
|
||||
|
||||
This command generates a plot showing only the **power** and **current** for the **MAIN** and **USB** sources.
|
||||
|
||||
```bash
|
||||
# main, usb power consumption
|
||||
python csv_2_plot.py power_log.csv custom_plot.png --type power --source main usb
|
||||
```
|
||||
|
||||
## Example Output
|
||||
|
||||
Running the plot script will generate an image file similar to this:
|
||||
|
||||

|
||||
|
||||
The 5-unit scale is highlighted with a blue dotted line, and the 10-unit scale is highlighted with a red dotted line.
|
||||
@@ -1,36 +1,53 @@
|
||||
import argparse
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from dateutil.tz import gettz
|
||||
from matplotlib.ticker import MultipleLocator, FuncFormatter
|
||||
import math
|
||||
|
||||
|
||||
def plot_power_data(csv_path, output_path, plot_types, sources):
|
||||
def plot_power_data(csv_path, output_path, plot_types, sources,
|
||||
voltage_y_max=None, current_y_max=None, power_y_max=None,
|
||||
relative_time=False, time_x_line=None, time_x_label=None):
|
||||
"""
|
||||
Reads power data from a CSV file and generates a plot image.
|
||||
|
||||
Args:
|
||||
csv_path (str): The path to the input CSV file.
|
||||
output_path (str): The path to save the output plot image.
|
||||
plot_types (list): A list of strings indicating which plots to generate
|
||||
(e.g., ['power', 'voltage', 'current']).
|
||||
sources (list): A list of strings indicating which power sources to plot
|
||||
(e.g., ['vin', 'main', 'usb']).
|
||||
plot_types (list): A list of strings indicating which plots to generate.
|
||||
sources (list): A list of strings indicating which power sources to plot.
|
||||
voltage_y_max (float, optional): Maximum value for the voltage plot's Y-axis.
|
||||
current_y_max (float, optional): Maximum value for the current plot's Y-axis.
|
||||
power_y_max (float, optional): Maximum value for the power plot's Y-axis.
|
||||
relative_time (bool): If True, the x-axis will show elapsed time from the start.
|
||||
time_x_line (float, optional): Interval in seconds for x-axis grid lines.
|
||||
time_x_label (float, optional): Interval in seconds for x-axis labels.
|
||||
"""
|
||||
try:
|
||||
# Read the CSV file into a pandas DataFrame
|
||||
# The 'timestamp' column is parsed as dates. Pandas automatically recognizes
|
||||
# the ISO format (with 'Z') as UTC.
|
||||
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
|
||||
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
|
||||
|
||||
# --- Timezone Conversion ---
|
||||
# Get the system's local timezone
|
||||
local_tz = gettz()
|
||||
# The timestamp from CSV is already UTC-aware.
|
||||
# Convert it to the system's local timezone for plotting.
|
||||
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
|
||||
print(f"Timestamp converted to local timezone: {local_tz}")
|
||||
if df.empty:
|
||||
print("CSV file is empty. Exiting.")
|
||||
return
|
||||
|
||||
# --- Time Handling ---
|
||||
x_axis_data = df['timestamp']
|
||||
if relative_time:
|
||||
start_time = df['timestamp'].iloc[0]
|
||||
df.loc[:, 'elapsed_seconds'] = (df['timestamp'] - start_time).dt.total_seconds()
|
||||
x_axis_data = df['elapsed_seconds']
|
||||
print("X-axis set to relative time (elapsed seconds).")
|
||||
else:
|
||||
# --- Timezone Conversion for absolute time ---
|
||||
local_tz = gettz()
|
||||
df.loc[:, 'timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
|
||||
print(f"Timestamp converted to local timezone: {local_tz}")
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{csv_path}' was not found.")
|
||||
@@ -39,24 +56,37 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
||||
print(f"An error occurred while reading the CSV file: {e}")
|
||||
return
|
||||
|
||||
# --- Calculate Average Interval ---
|
||||
avg_interval_ms = 0
|
||||
if len(df) > 1:
|
||||
avg_interval = df['timestamp'].diff().mean()
|
||||
avg_interval_ms = avg_interval.total_seconds() * 1000
|
||||
|
||||
# --- Calculate Average Voltages ---
|
||||
avg_voltages = {}
|
||||
for source in sources:
|
||||
voltage_col = f'{source}_voltage'
|
||||
if voltage_col in df.columns:
|
||||
avg_voltages[source] = df[voltage_col].mean()
|
||||
|
||||
# --- Plotting Configuration ---
|
||||
# Y-axis scale settings from chart.js
|
||||
scale_config = {
|
||||
'power': {'steps': [5, 20, 50, 160]},
|
||||
'voltage': {'steps': [5, 10, 15, 25]},
|
||||
'current': {'steps': [1, 2.5, 5, 10]}
|
||||
}
|
||||
|
||||
plot_configs = {
|
||||
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
|
||||
'cols': [f'{s}_power' for s in sources]},
|
||||
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
|
||||
'cols': [f'{s}_voltage' for s in sources]},
|
||||
'current': {'title': 'Current', 'ylabel': 'Current (A)',
|
||||
'cols': [f'{s}_current' for s in sources]}
|
||||
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
|
||||
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
|
||||
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
|
||||
}
|
||||
y_max_options = {
|
||||
'power': power_y_max,
|
||||
'voltage': voltage_y_max,
|
||||
'current': current_y_max
|
||||
}
|
||||
|
||||
channel_labels = [s.upper() for s in sources]
|
||||
# Define a color map for all possible sources
|
||||
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
|
||||
channel_colors = [color_map[s] for s in sources]
|
||||
|
||||
@@ -65,20 +95,17 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
||||
print("No plot types selected. Exiting.")
|
||||
return
|
||||
|
||||
# Create a figure and a set of subplots based on the number of selected plot types.
|
||||
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
|
||||
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
|
||||
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
|
||||
axes = axes.flatten()
|
||||
|
||||
# --- Loop through selected plot types and generate plots ---
|
||||
for i, plot_type in enumerate(plot_types):
|
||||
ax = axes[i]
|
||||
config = plot_configs[plot_type]
|
||||
|
||||
max_data_value = 0
|
||||
for j, col_name in enumerate(config['cols']):
|
||||
if col_name in df.columns:
|
||||
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
|
||||
# Find the maximum value in the current column to set the y-axis limit
|
||||
ax.plot(x_axis_data, df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
|
||||
max_col_value = df[col_name].max()
|
||||
if max_col_value > max_data_value:
|
||||
max_data_value = max_col_value
|
||||
@@ -86,34 +113,110 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
|
||||
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
|
||||
|
||||
# --- Dynamic Y-axis Scaling ---
|
||||
ax.set_ylim(bottom=0) # Set y-axis minimum to 0
|
||||
if plot_type in scale_config:
|
||||
ax.set_ylim(bottom=0)
|
||||
y_max_option = y_max_options.get(plot_type)
|
||||
if y_max_option is not None:
|
||||
ax.set_ylim(top=y_max_option)
|
||||
elif plot_type in scale_config:
|
||||
steps = scale_config[plot_type]['steps']
|
||||
# Find the smallest step that is >= max_data_value
|
||||
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
|
||||
ax.set_ylim(top=new_max)
|
||||
|
||||
ax.set_title(config['title'])
|
||||
ax.set_ylabel(config['ylabel'])
|
||||
ax.legend()
|
||||
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
|
||||
|
||||
# --- Formatting the x-axis (Time) ---
|
||||
local_tz = gettz()
|
||||
# --- Y-Grid and Tick Configuration ---
|
||||
y_min, y_max = ax.get_ylim()
|
||||
|
||||
if y_max <= 0:
|
||||
major_interval = 1.0 # Default for very small or zero range
|
||||
elif plot_type == 'current' and y_max <= 2.5:
|
||||
major_interval = 0.5 # Maintain current behavior for very small current values
|
||||
elif y_max <= 10:
|
||||
major_interval = 2.0 # Maintain current behavior for small ranges where 5-unit is too coarse
|
||||
elif y_max <= 25:
|
||||
major_interval = 5.0 # Already a multiple of 5
|
||||
else: # y_max > 25
|
||||
# Aim for major ticks that are multiples of 5.
|
||||
# Calculate a rough interval to get around 5 major ticks.
|
||||
rough_interval = y_max / 5.0
|
||||
|
||||
# Find the smallest multiple of 5 that is greater than or equal to rough_interval.
|
||||
# This ensures labels are multiples of 5.
|
||||
major_interval = math.ceil(rough_interval / 5.0) * 5.0
|
||||
|
||||
# Ensure major_interval is not 0 if y_max is small but positive.
|
||||
if major_interval == 0 and y_max > 0:
|
||||
major_interval = 5.0
|
||||
|
||||
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
|
||||
ax.yaxis.set_minor_locator(MultipleLocator(1))
|
||||
ax.yaxis.grid(False, which='major')
|
||||
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
|
||||
|
||||
for y_val in range(int(y_min), int(y_max) + 1):
|
||||
if y_val == 0: continue
|
||||
if y_val % 10 == 0:
|
||||
ax.axhline(y=y_val, color='maroon', linestyle='--', linewidth=1.2, zorder=1)
|
||||
elif y_val % 5 == 0:
|
||||
ax.axhline(y=y_val, color='midnightblue', linestyle='--', linewidth=1.2, zorder=1)
|
||||
|
||||
# --- X-Grid Configuration ---
|
||||
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
|
||||
if time_x_line is not None:
|
||||
ax.xaxis.grid(True, which='minor', linestyle=':', linewidth=0.6)
|
||||
|
||||
|
||||
# --- Formatting the x-axis ---
|
||||
last_ax = axes[-1]
|
||||
# Pass the timezone to the formatter
|
||||
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
|
||||
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
|
||||
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})') # Display timezone name
|
||||
if not df.empty:
|
||||
last_ax.set_xlim(x_axis_data.iloc[0], x_axis_data.iloc[-1])
|
||||
|
||||
if relative_time:
|
||||
plt.xlabel('Elapsed Time (seconds)')
|
||||
if time_x_label is not None:
|
||||
last_ax.xaxis.set_major_locator(MultipleLocator(time_x_label))
|
||||
else:
|
||||
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
|
||||
if time_x_line is not None:
|
||||
last_ax.xaxis.set_minor_locator(MultipleLocator(time_x_line))
|
||||
else:
|
||||
local_tz = gettz()
|
||||
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
|
||||
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
|
||||
if time_x_label is not None:
|
||||
last_ax.xaxis.set_major_locator(mdates.SecondLocator(interval=int(time_x_label)))
|
||||
else:
|
||||
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
|
||||
if time_x_line is not None:
|
||||
last_ax.xaxis.set_minor_locator(mdates.SecondLocator(interval=int(time_x_line)))
|
||||
|
||||
plt.xticks(rotation=45)
|
||||
|
||||
# Add a main title to the figure
|
||||
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
|
||||
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
|
||||
fig.suptitle(f'PowerMate Log ({start_time} to {end_time})', fontsize=16, y=0.95)
|
||||
# --- Add a main title and subtitle ---
|
||||
if relative_time:
|
||||
main_title = 'PowerMate Log'
|
||||
else:
|
||||
start_time_str = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
|
||||
end_time_str = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
|
||||
main_title = f'PowerMate Log ({start_time_str} to {end_time_str})'
|
||||
|
||||
# Adjust layout to prevent titles/labels from overlapping
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.94])
|
||||
|
||||
subtitle_parts = []
|
||||
if avg_interval_ms > 0:
|
||||
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
|
||||
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
|
||||
if voltage_strings:
|
||||
subtitle_parts.extend(voltage_strings)
|
||||
subtitle = ' | '.join(subtitle_parts)
|
||||
|
||||
full_title = main_title
|
||||
if subtitle:
|
||||
full_title += f'\n{subtitle}'
|
||||
fig.suptitle(full_title, fontsize=14)
|
||||
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.98])
|
||||
|
||||
# --- Save the plot to a file ---
|
||||
try:
|
||||
@@ -143,9 +246,32 @@ def main():
|
||||
help="Power sources to plot. Choose from 'vin', 'main', 'usb'. "
|
||||
"Default is to plot all three."
|
||||
)
|
||||
parser.add_argument("--voltage_y_max", type=float, help="Maximum value for the voltage plot's Y-axis.")
|
||||
parser.add_argument("--current_y_max", type=float, help="Maximum value for the current plot's Y-axis.")
|
||||
parser.add_argument("--power_y_max", type=float, help="Maximum value for the power plot's Y-axis.")
|
||||
parser.add_argument(
|
||||
"-r", "--relative-time",
|
||||
action='store_true',
|
||||
help="Display the x-axis as elapsed time from the start (in seconds) instead of absolute time."
|
||||
)
|
||||
parser.add_argument("--time_x_line", type=float, help="Interval in seconds for x-axis grid lines.")
|
||||
parser.add_argument("--time_x_label", type=float, help="Interval in seconds for x-axis labels.")
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
plot_power_data(args.input_csv, args.output_image, args.type, args.source)
|
||||
plot_power_data(
|
||||
args.input_csv,
|
||||
args.output_image,
|
||||
args.type,
|
||||
args.source,
|
||||
voltage_y_max=args.voltage_y_max,
|
||||
current_y_max=args.current_y_max,
|
||||
power_y_max=args.power_y_max,
|
||||
relative_time=args.relative_time,
|
||||
time_x_line=args.time_x_line,
|
||||
time_x_label=args.time_x_label
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
BIN
example/logger/img/plot.png
Normal file
BIN
example/logger/img/plot.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 239 KiB |
@@ -3,7 +3,7 @@ import asyncio
|
||||
import csv
|
||||
import requests
|
||||
import websockets
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timezone
|
||||
|
||||
# Import the status_pb2.py file generated by `protoc`.
|
||||
# This file must be in the same directory as logger.py.
|
||||
@@ -68,7 +68,7 @@ class OdroidPowerLogger:
|
||||
csv_file = open(self.output_file, 'w', newline='', encoding='utf-8')
|
||||
csv_writer = csv.writer(csv_file)
|
||||
|
||||
# Write header - matches main.js and csv_2_plot.py expectations
|
||||
# Write header
|
||||
header = [
|
||||
'timestamp', 'uptime_ms',
|
||||
'vin_voltage', 'vin_current', 'vin_power',
|
||||
@@ -97,24 +97,22 @@ class OdroidPowerLogger:
|
||||
# Process only if the payload type is 'sensor_data'
|
||||
if status_message.WhichOneof('payload') == 'sensor_data':
|
||||
sensor_data = status_message.sensor_data
|
||||
|
||||
# Format timestamp to ISO format with 'Z' for UTC, matching main.js
|
||||
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000)
|
||||
ts_iso = ts_dt.isoformat(timespec='milliseconds') + 'Z'
|
||||
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000, tz=timezone.utc)
|
||||
ts_str_print = ts_dt.strftime('%Y-%m-%d %H:%M:%S UTC')
|
||||
|
||||
# Print data for console output (can be adjusted if needed)
|
||||
print(f"--- {ts_iso} (Uptime: {sensor_data.uptime_ms / 1000:.3f}s) ---")
|
||||
print(f"--- {ts_str_print} (Uptime: {sensor_data.uptime_ms / 1000}s) ---")
|
||||
|
||||
# Print data for each channel
|
||||
for name, channel in [('VIN', sensor_data.vin), ('MAIN', sensor_data.main),
|
||||
('USB', sensor_data.usb)]:
|
||||
print(
|
||||
f" {name:<4}: {channel.voltage:.3f} V | {channel.current:.3f} A | {channel.power:.3f} W")
|
||||
f" {name:<4}: {channel.voltage:5.2f} V | {channel.current:5.3f} A | {channel.power:5.2f} W")
|
||||
|
||||
# Write to CSV if enabled
|
||||
if csv_writer:
|
||||
# Format numerical values to 3 decimal places, matching main.js
|
||||
ts_iso_csv = ts_dt.isoformat(timespec='milliseconds').replace('+00:00', 'Z')
|
||||
row = [
|
||||
ts_iso,
|
||||
sensor_data.uptime_ms,
|
||||
ts_iso_csv, sensor_data.uptime_ms,
|
||||
f"{sensor_data.vin.voltage:.3f}", f"{sensor_data.vin.current:.3f}", f"{sensor_data.vin.power:.3f}",
|
||||
f"{sensor_data.main.voltage:.3f}", f"{sensor_data.main.current:.3f}", f"{sensor_data.main.power:.3f}",
|
||||
f"{sensor_data.usb.voltage:.3f}", f"{sensor_data.usb.current:.3f}", f"{sensor_data.usb.power:.3f}"
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 272 KiB |
@@ -54,9 +54,9 @@ ina3221_t ina3221 = {
|
||||
.ch1 = true, // channel 1 enable
|
||||
.ch2 = true, // channel 2 enable
|
||||
.ch3 = true, // channel 3 enable
|
||||
.avg = INA3221_AVG_64, // 64 samples average
|
||||
.vbus = INA3221_CT_2116, // 2ms by channel (bus)
|
||||
.vsht = INA3221_CT_2116, // 2ms by channel (shunt)
|
||||
.avg = INA3221_AVG_16, // 16 samples average
|
||||
.vbus = INA3221_CT_140, // 140us by channel (bus)
|
||||
.vsht = INA3221_CT_1100, // 1.1ms by channel (shunt)
|
||||
},
|
||||
};
|
||||
|
||||
@@ -298,7 +298,7 @@ void init_status_monitor()
|
||||
|
||||
esp_err_t update_sensor_period(int period)
|
||||
{
|
||||
if (period < 500 || period > 10000) // 0.5 sec ~ 10 sec
|
||||
if (period < 100 || period > 10000) // 0.1 sec ~ 10 sec
|
||||
{
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
@@ -379,7 +379,7 @@
|
||||
</div>
|
||||
<div class="mb-3 p-3 border rounded">
|
||||
<label for="period-slider" class="form-label">Sensor Period: <span class="fw-bold text-primary" id="period-value">...</span> ms</label>
|
||||
<input type="range" class="form-range" id="period-slider" min="500" max="5000" step="100">
|
||||
<input type="range" class="form-range" id="period-slider" min="100" max="5000" step="100">
|
||||
<div class="d-flex justify-content-end mt-2">
|
||||
<button type="button" class="btn btn-primary btn-sm" id="period-apply-button">Apply</button>
|
||||
</div>
|
||||
|
||||
Reference in New Issue
Block a user