3 Commits

Author SHA1 Message Date
55b5296d16 csv_2_plot: update y-axis gridline colors
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 18:19:26 +09:00
a8faa6a441 csv_2_plot: improve plot configuration and add average voltage/interval calculations
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 18:19:26 +09:00
c7188df159 logger: save time on UTC
Signed-off-by: YoungSoo Shin <shinys000114@gmail.com>
2025-12-09 16:49:12 +09:00
3 changed files with 93 additions and 45 deletions

View File

@@ -1,8 +1,10 @@
import argparse
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import pandas as pd
from dateutil.tz import gettz
from matplotlib.ticker import MultipleLocator
def plot_power_data(csv_path, output_path, plot_types, sources):
@@ -19,16 +21,11 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
"""
try:
# Read the CSV file into a pandas DataFrame
# The 'timestamp' column is parsed as dates. Pandas automatically recognizes
# the ISO format (with 'Z') as UTC.
df = pd.read_csv(csv_path, parse_dates=['timestamp'])
print(f"Successfully loaded {len(df)} records from '{csv_path}'")
# --- Timezone Conversion ---
# Get the system's local timezone
local_tz = gettz()
# The timestamp from CSV is already UTC-aware.
# Convert it to the system's local timezone for plotting.
df['timestamp'] = df['timestamp'].dt.tz_convert(local_tz)
print(f"Timestamp converted to local timezone: {local_tz}")
@@ -39,24 +36,32 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print(f"An error occurred while reading the CSV file: {e}")
return
# --- Calculate Average Interval ---
avg_interval_ms = 0
if len(df) > 1:
avg_interval = df['timestamp'].diff().mean()
avg_interval_ms = avg_interval.total_seconds() * 1000
# --- Calculate Average Voltages ---
avg_voltages = {}
for source in sources:
voltage_col = f'{source}_voltage'
if voltage_col in df.columns:
avg_voltages[source] = df[voltage_col].mean()
# --- Plotting Configuration ---
# Y-axis scale settings from chart.js
scale_config = {
'power': {'steps': [5, 20, 50, 160]},
'voltage': {'steps': [5, 10, 15, 25]},
'current': {'steps': [1, 2.5, 5, 10]}
}
plot_configs = {
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
'cols': [f'{s}_power' for s in sources]},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
'cols': [f'{s}_voltage' for s in sources]},
'current': {'title': 'Current', 'ylabel': 'Current (A)',
'cols': [f'{s}_current' for s in sources]}
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)', 'cols': [f'{s}_power' for s in sources]},
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)', 'cols': [f'{s}_voltage' for s in sources]},
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': [f'{s}_current' for s in sources]}
}
channel_labels = [s.upper() for s in sources]
# Define a color map for all possible sources
color_map = {'vin': 'red', 'main': 'green', 'usb': 'blue'}
channel_colors = [color_map[s] for s in sources]
@@ -65,20 +70,17 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print("No plot types selected. Exiting.")
return
# Create a figure and a set of subplots based on the number of selected plot types.
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 9 * num_plots), sharex=True, squeeze=False)
axes = axes.flatten()
# --- Loop through selected plot types and generate plots ---
for i, plot_type in enumerate(plot_types):
ax = axes[i]
config = plot_configs[plot_type]
max_data_value = 0
for j, col_name in enumerate(config['cols']):
if col_name in df.columns:
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
# Find the maximum value in the current column to set the y-axis limit
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j], zorder=2)
max_col_value = df[col_name].max()
if max_col_value > max_data_value:
max_data_value = max_col_value
@@ -86,34 +88,82 @@ def plot_power_data(csv_path, output_path, plot_types, sources):
print(f"Warning: Column '{col_name}' not found in CSV. Skipping.")
# --- Dynamic Y-axis Scaling ---
ax.set_ylim(bottom=0) # Set y-axis minimum to 0
ax.set_ylim(bottom=0)
if plot_type in scale_config:
steps = scale_config[plot_type]['steps']
# Find the smallest step that is >= max_data_value
new_max = next((step for step in steps if step >= max_data_value), steps[-1])
ax.set_ylim(top=new_max)
ax.set_title(config['title'])
ax.set_ylabel(config['ylabel'])
ax.legend()
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
# --- Grid and Tick Configuration ---
y_min, y_max = ax.get_ylim()
# Keep the dynamic major_interval logic for tick LABELS
if plot_type == 'current' and y_max <= 2.5:
major_interval = 0.5
elif y_max <= 10:
major_interval = 2
elif y_max <= 25:
major_interval = 5
else:
major_interval = y_max / 5.0
ax.yaxis.set_major_locator(MultipleLocator(major_interval))
ax.yaxis.set_minor_locator(MultipleLocator(1))
# Disable the default major grid, but keep the minor one
ax.yaxis.grid(False, which='major')
ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=0.6, zorder=0)
# Draw custom lines for 5 and 10 multiples, which are now the only major grid lines
for y_val in range(int(y_min), int(y_max) + 1):
if y_val == 0: continue
if y_val % 10 == 0:
ax.axhline(y=y_val, color='maroon', linestyle='--', linewidth=1.2, zorder=1)
elif y_val % 5 == 0:
ax.axhline(y=y_val, color='midnightblue', linestyle='--', linewidth=1.2, zorder=1)
# Keep the x-axis grid
ax.xaxis.grid(True, which='major', linestyle='--', linewidth=0.8)
# --- Formatting the x-axis (Time) ---
local_tz = gettz()
last_ax = axes[-1]
# Pass the timezone to the formatter
if not df.empty:
last_ax.set_xlim(df['timestamp'].iloc[0], df['timestamp'].iloc[-1])
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S', tz=local_tz))
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})') # Display timezone name
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15))
plt.xlabel(f'Time ({local_tz.tzname(df["timestamp"].iloc[-1])})')
plt.xticks(rotation=45)
# Add a main title to the figure
# --- Add a main title and subtitle ---
start_time = df['timestamp'].iloc[0].strftime('%Y-%m-%d %H:%M:%S')
end_time = df['timestamp'].iloc[-1].strftime('%H:%M:%S')
fig.suptitle(f'PowerMate Log ({start_time} to {end_time})', fontsize=16, y=0.95)
main_title = f'PowerMate Log ({start_time} to {end_time})'
# Adjust layout to prevent titles/labels from overlapping
plt.tight_layout(rect=[0, 0, 1, 0.94])
subtitle_parts = []
if avg_interval_ms > 0:
subtitle_parts.append(f'Avg. Interval: {avg_interval_ms:.2f} ms')
voltage_strings = [f'{source.upper()} Avg: {avg_v:.2f} V' for source, avg_v in avg_voltages.items()]
if voltage_strings:
subtitle_parts.extend(voltage_strings)
subtitle = ' | '.join(subtitle_parts)
full_title = main_title
if subtitle:
full_title += f'\n{subtitle}'
fig.suptitle(full_title, fontsize=14)
# Adjust layout to make space for the subtitle
plt.tight_layout(rect=[0, 0, 1, 0.93])
# --- Save the plot to a file ---
try:

View File

@@ -3,7 +3,7 @@ import asyncio
import csv
import requests
import websockets
from datetime import datetime
from datetime import datetime, timezone
# Import the status_pb2.py file generated by `protoc`.
# This file must be in the same directory as logger.py.
@@ -68,7 +68,7 @@ class OdroidPowerLogger:
csv_file = open(self.output_file, 'w', newline='', encoding='utf-8')
csv_writer = csv.writer(csv_file)
# Write header - matches main.js and csv_2_plot.py expectations
# Write header
header = [
'timestamp', 'uptime_ms',
'vin_voltage', 'vin_current', 'vin_power',
@@ -97,27 +97,25 @@ class OdroidPowerLogger:
# Process only if the payload type is 'sensor_data'
if status_message.WhichOneof('payload') == 'sensor_data':
sensor_data = status_message.sensor_data
# Format timestamp to ISO format with 'Z' for UTC, matching main.js
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000)
ts_iso = ts_dt.isoformat(timespec='milliseconds') + 'Z'
ts_dt = datetime.fromtimestamp(sensor_data.timestamp_ms / 1000, tz=timezone.utc)
ts_str_print = ts_dt.strftime('%Y-%m-%d %H:%M:%S UTC')
# Print data for console output (can be adjusted if needed)
print(f"--- {ts_iso} (Uptime: {sensor_data.uptime_ms / 1000:.3f}s) ---")
print(f"--- {ts_str_print} (Uptime: {sensor_data.uptime_ms / 1000}s) ---")
# Print data for each channel
for name, channel in [('VIN', sensor_data.vin), ('MAIN', sensor_data.main),
('USB', sensor_data.usb)]:
print(
f" {name:<4}: {channel.voltage:.3f} V | {channel.current:.3f} A | {channel.power:.3f} W")
f" {name:<4}: {channel.voltage:5.2f} V | {channel.current:5.3f} A | {channel.power:5.2f} W")
# Write to CSV if enabled
if csv_writer:
# Format numerical values to 3 decimal places, matching main.js
ts_iso_csv = ts_dt.isoformat(timespec='milliseconds').replace('+00:00', 'Z')
row = [
ts_iso,
sensor_data.uptime_ms,
f"{sensor_data.vin.voltage:.3f}", f"{sensor_data.vin.current:.3f}", f"{sensor_data.vin.power:.3f}",
f"{sensor_data.main.voltage:.3f}", f"{sensor_data.main.current:.3f}", f"{sensor_data.main.power:.3f}",
f"{sensor_data.usb.voltage:.3f}", f"{sensor_data.usb.current:.3f}", f"{sensor_data.usb.power:.3f}"
ts_iso_csv, sensor_data.uptime_ms,
sensor_data.vin.voltage, sensor_data.vin.current, sensor_data.vin.power,
sensor_data.main.voltage, sensor_data.main.current, sensor_data.main.power,
sensor_data.usb.voltage, sensor_data.usb.current, sensor_data.usb.power
]
csv_writer.writerow(row)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 272 KiB

After

Width:  |  Height:  |  Size: 236 KiB