|
|
|
|
@@ -5,13 +5,15 @@ import os
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_power_data(csv_path, output_path):
|
|
|
|
|
def plot_power_data(csv_path, output_path, plot_types):
|
|
|
|
|
"""
|
|
|
|
|
Reads power data from a CSV file and generates a plot image.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
csv_path (str): The path to the input CSV file.
|
|
|
|
|
output_path (str): The path to save the output plot image.
|
|
|
|
|
plot_types (list): A list of strings indicating which plots to generate
|
|
|
|
|
(e.g., ['power', 'voltage', 'current']).
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
# Read the CSV file into a pandas DataFrame
|
|
|
|
|
@@ -25,44 +27,47 @@ def plot_power_data(csv_path, output_path):
|
|
|
|
|
print(f"An error occurred while reading the CSV file: {e}")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Create a figure and a set of subplots (3 rows, 1 column)
|
|
|
|
|
# --- Plotting Configuration ---
|
|
|
|
|
plot_configs = {
|
|
|
|
|
'power': {'title': 'Power Consumption', 'ylabel': 'Power (W)',
|
|
|
|
|
'cols': ['vin_power', 'main_power', 'usb_power']},
|
|
|
|
|
'voltage': {'title': 'Voltage', 'ylabel': 'Voltage (V)',
|
|
|
|
|
'cols': ['vin_voltage', 'main_voltage', 'usb_voltage']},
|
|
|
|
|
'current': {'title': 'Current', 'ylabel': 'Current (A)', 'cols': ['vin_current', 'main_current', 'usb_current']}
|
|
|
|
|
}
|
|
|
|
|
channel_labels = ['VIN', 'MAIN', 'USB']
|
|
|
|
|
channel_colors = ['red', 'green', 'blue']
|
|
|
|
|
|
|
|
|
|
num_plots = len(plot_types)
|
|
|
|
|
if num_plots == 0:
|
|
|
|
|
print("No plot types selected. Exiting.")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# Create a figure and a set of subplots based on the number of selected plot types.
|
|
|
|
|
# sharex=True makes all subplots share the same x-axis (time)
|
|
|
|
|
fig, axes = plt.subplots(3, 1, figsize=(15, 18), sharex=True)
|
|
|
|
|
# squeeze=False ensures that 'axes' is always a 2D array, even if num_plots is 1.
|
|
|
|
|
fig, axes = plt.subplots(num_plots, 1, figsize=(15, 6 * num_plots), sharex=True, squeeze=False)
|
|
|
|
|
axes = axes.flatten() # Flatten the 2D array to 1D for easier iteration
|
|
|
|
|
|
|
|
|
|
# --- Plot 1: Power (W) ---
|
|
|
|
|
ax1 = axes[0]
|
|
|
|
|
ax1.plot(df['timestamp'], df['vin_power'], label='VIN', color='red')
|
|
|
|
|
ax1.plot(df['timestamp'], df['main_power'], label='MAIN', color='green')
|
|
|
|
|
ax1.plot(df['timestamp'], df['usb_power'], label='USB', color='blue')
|
|
|
|
|
ax1.set_title('Power Consumption')
|
|
|
|
|
ax1.set_ylabel('Power (W)')
|
|
|
|
|
ax1.legend()
|
|
|
|
|
ax1.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
|
|
|
# --- Loop through selected plot types and generate plots ---
|
|
|
|
|
for i, plot_type in enumerate(plot_types):
|
|
|
|
|
ax = axes[i]
|
|
|
|
|
config = plot_configs[plot_type]
|
|
|
|
|
|
|
|
|
|
# --- Plot 2: Voltage (V) ---
|
|
|
|
|
ax2 = axes[1]
|
|
|
|
|
ax2.plot(df['timestamp'], df['vin_voltage'], label='VIN', color='red')
|
|
|
|
|
ax2.plot(df['timestamp'], df['main_voltage'], label='MAIN', color='green')
|
|
|
|
|
ax2.plot(df['timestamp'], df['usb_voltage'], label='USB', color='blue')
|
|
|
|
|
ax2.set_title('Voltage')
|
|
|
|
|
ax2.set_ylabel('Voltage (V)')
|
|
|
|
|
ax2.legend()
|
|
|
|
|
ax2.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
|
|
|
for j, col_name in enumerate(config['cols']):
|
|
|
|
|
ax.plot(df['timestamp'], df[col_name], label=channel_labels[j], color=channel_colors[j])
|
|
|
|
|
|
|
|
|
|
# --- Plot 3: Current (A) ---
|
|
|
|
|
ax3 = axes[2]
|
|
|
|
|
ax3.plot(df['timestamp'], df['vin_current'], label='VIN', color='red')
|
|
|
|
|
ax3.plot(df['timestamp'], df['main_current'], label='MAIN', color='green')
|
|
|
|
|
ax3.plot(df['timestamp'], df['usb_current'], label='USB', color='blue')
|
|
|
|
|
ax3.set_title('Current')
|
|
|
|
|
ax3.set_ylabel('Current (A)')
|
|
|
|
|
ax3.legend()
|
|
|
|
|
ax3.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
|
|
|
ax.set_title(config['title'])
|
|
|
|
|
ax.set_ylabel(config['ylabel'])
|
|
|
|
|
ax.legend()
|
|
|
|
|
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
|
|
|
|
|
|
|
|
|
|
# --- Formatting the x-axis (Time) ---
|
|
|
|
|
# Improve date formatting on the x-axis
|
|
|
|
|
ax3.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
|
|
|
|
ax3.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
|
|
|
|
|
# Apply formatting to the last subplot's x-axis
|
|
|
|
|
last_ax = axes[-1]
|
|
|
|
|
last_ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
|
|
|
|
last_ax.xaxis.set_major_locator(plt.MaxNLocator(15)) # Limit the number of ticks
|
|
|
|
|
plt.xlabel('Time')
|
|
|
|
|
plt.xticks(rotation=45)
|
|
|
|
|
|
|
|
|
|
@@ -83,12 +88,20 @@ def plot_power_data(csv_path, output_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid PowerMate CSV log file.")
|
|
|
|
|
parser = argparse.ArgumentParser(description="Generate a plot from an Odroid Smart Power CSV log file.")
|
|
|
|
|
parser.add_argument("input_csv", help="Path to the input CSV log file.")
|
|
|
|
|
parser.add_argument("output_image", help="Path to save the output plot image (e.g., plot.png).")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"-t", "--type",
|
|
|
|
|
nargs='+',
|
|
|
|
|
choices=['power', 'voltage', 'current'],
|
|
|
|
|
default=['power', 'voltage', 'current'],
|
|
|
|
|
help="Types of plots to generate. Choose from 'power', 'voltage', 'current'. "
|
|
|
|
|
"Default is to generate all three."
|
|
|
|
|
)
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
plot_power_data(args.input_csv, args.output_image)
|
|
|
|
|
plot_power_data(args.input_csv, args.output_image, args.type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|